Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-[Bis(4-fluorophenyl)methyl]-4-[2-(2methylphenoxy)ethyl]piperazine

Zhao-Hui Dai,^a Yan Zhong^b and Bin Wu^a*

^aSchool of Pharmacy, Nanjing Medical University, Hanzhong Road No. 140 Nanjing, Nanjing 210029, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, Southeast University, Sipailou No. 2 Nanjing, Nanjing 210096, People's Republic of China Correspondence e-mail: wubin@nimu.edu.cn

Received 9 March 2012; accepted 12 March 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.063; wR factor = 0.191; data-to-parameter ratio = 15.5.

In the title molecule, $C_{26}H_{28}F_2N_2O$, the piperazine ring adopts a chair conformation, with the N-bonded substituents in equatorial orientations. The dihedral angle between the fluorobenzene rings is 69.10 (15).

Related literature

For related structures and background to 1-(bis(4-fluorophenyl)methyl)piperazine derivatives, see: Wu *et al.* (2008); Dayananda *et al.* (2012); Zhong *et al.* (2011).

Crystal data C₂₆H₂₈F₂N₂O

 $M_r = 422.50$

Monoclinic, $P2_1/c$ a = 10.021 (2) Å b = 15.203 (3) Å c = 15.868 (3) Å $\beta = 100.54$ (3)° V = 2376.7 (8) Å³

Data collection

Enraf-Nonious CAD-4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.976, T_{\max} = 0.992$ 4618 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.063$ $wR(F^2) = 0.191$ S = 1.034355 reflections Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K $0.30 \times 0.20 \times 0.10 \text{ mm}$

Z = 4

4355 independent reflections 2404 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ 3 standard reflections every 200 reflections intensity decay: 1%

281 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.19 \text{ e } \text{\AA}^{-3}$

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The authors thank Professor Hua-Qin Wang of the Analysis Centre, Nanjing University, for the diffraction measurements. This work was supported by the Natural Science Foundation of Jiangsu Province (No. BK2010538).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6677).

References

Dayananda, A. S., Yathirajan, H. S. & Flörke, U. (2012). Acta Cryst. E68, 0968. Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wu, B., Zhou, L. & Cai, H.-H. (2008). Chin. Chem. Lett. **19**, 1163–1166. Zhong, Y., Zhang, X. P. & Wu, B. (2011). Acta Cryst. E**67**, 03342.

supplementary materials

Acta Cryst. (2012). E68, o1077 [doi:10.1107/S1600536812010744]

1-[Bis(4-fluorophenyl)methyl]-4-[2-(2-methylphenoxy)ethyl]piperazine

Zhao-Hui Dai, Yan Zhong and Bin Wu

Comment

As a continuation of our study of 1-(bis(4-fluorophenyl)methyl)piperazine derivatives (Wu *et al.*, 2008; Zhong *et al.*, 2011), we present here the title compound (I). In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in related compounds (Zhong *et al.*, 2011). The piperazine ring adopts a chair conformation with puchering parameters Q = 0.591 (3), Theta = 1.7 (3), Phi = 333 (6). The dihedral angle between the fluorobenzene rings is 69.10 (15).

Experimental

A mixture of 1-(2-bromoethoxy)-2-methylbenzene (10 mmol), 1-(bis(4-fluorophenyl)methyl)piperazine (15 mmol) and triethylamine (5 ml) were mixed along with 40 ml acetonitrile and then refluxed for about 24 h. The progress of the reaction was monitored by TLC. After confirming that the reaction was completed, the solvent was removed under reduced pressure. The resultant mixture was cooled. The solid, 1-(bis(4-fluorophenyl)methyl)-4-(2-(2-methylphenoxy)-ethyl)piperazine obtained was filtered and was recrystallized from ethanol. The colorless blocks of the title compound were grown in ethanol by a slow evaporation at room temperature.

Refinement

All hydrogen atoms were positioned geometrically with C—H distances ranging from 0.93 Å to 0.98 Å and refined as riding on their parent atoms with Uiso~(H) = 1.2 or 1.5U~eq~ of the carrier atom.

Computing details

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

The molecular structure of (I) with displacement ellipsoids for non-H drawn at 70% probability level.

Figure 2

Packing diagram of the title compound.

1-[Bis(4-fluorophenyl)methyl]-4-[2-(2-methylphenoxy)ethyl]piperazine

Crystal data
$C_{26}H_{28}F_2N_2O$
$M_r = 422.50$
Monoclinic, $P2_1/c$
a = 10.021 (2) Å
<i>b</i> = 15.203 (3) Å
c = 15.868 (3) Å
$\beta = 100.54 \ (3)^{\circ}$
V = 2376.7 (8) Å ³
Z = 4

F(000) = 896 $D_x = 1.181 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10-13^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.30 \times 0.20 \times 0.10 \text{ mm}$ Data collection

Enraf-Nonious CAD-4	4355 independent reflections
diffractometer	2404 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.040$
Graphite monochromator	$\theta_{\rm max} = 25.4^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
$\omega/2\theta$ scans	$h = 0 \rightarrow 12$
Absorption correction: ψ scan	$k = 0 \rightarrow 18$
(North <i>et al.</i> , 1968)	$l = -19 \rightarrow 18$
$T_{\min} = 0.976, \ T_{\max} = 0.992$	3 standard reflections every 200 reflections
4618 measured reflections	intensity decay: 1%
Refinement	

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.063$	H-atom parameters constrained
$wR(F^2) = 0.191$	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
S = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
4355 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
281 parameters	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.015 (2)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0	0.7306 (2)	1.14171 (14)	0.42351 (12)	0.0810 (7)	
N1	0.7468 (2)	0.84241 (14)	0.22937 (13)	0.0581 (6)	
F1	0.8567 (2)	0.43605 (12)	0.19160 (11)	0.1000 (7)	
C1	0.7161 (3)	0.65379 (19)	0.18894 (18)	0.0643 (8)	
H1A	0.6365	0.6807	0.1978	0.077*	
N2	0.7479 (2)	0.95279 (15)	0.37811 (14)	0.0686 (7)	
F2	0.5198 (2)	0.89761 (15)	-0.16486 (11)	0.1113 (7)	
C2	0.7277 (3)	0.5639 (2)	0.19660 (18)	0.0721 (9)	
H2A	0.6576	0.5304	0.2111	0.087*	
C3	0.8442 (4)	0.5253 (2)	0.18250 (17)	0.0708 (8)	
C4	0.9473 (3)	0.5721 (2)	0.1593 (2)	0.0756 (9)	
H4A	1.0247	0.5441	0.1482	0.091*	
C5	0.9339 (3)	0.6618 (2)	0.15294 (18)	0.0681 (8)	
H5A	1.0042	0.6945	0.1376	0.082*	

C6	0.8195 (3)	0.70541 (18)	0.16848 (15)	0.0552 (7)
C7	0.8082 (3)	0.80441 (18)	0.16018 (16)	0.0561 (7)
H7A	0.9001	0.8284	0.1652	0.067*
C8	0.7296 (3)	0.82920 (17)	0.07345 (16)	0.0546 (7)
C9	0.5904 (3)	0.8252 (3)	0.05368 (19)	0.0904 (11)
H9A	0.5427	0.8064	0.0954	0.108*
C10	0.5197 (3)	0.8480 (3)	-0.0254 (2)	0.1014 (13)
H10A	0.4253	0.8455	-0.0369	0.122*
C11	0.5892 (3)	0.8743 (2)	-0.08663 (18)	0.0724 (9)
C12	0.7263 (3)	0.87824 (19)	-0.07114 (18)	0.0685 (8)
H12A	0.7727	0.8961	-0.1138	0.082*
C13	0.7958 (3)	0.85550 (17)	0.00850 (17)	0.0597 (7)
H13A	0.8901	0.8578	0.0191	0.072*
C14	0.7401 (3)	0.93889 (19)	0.22319 (18)	0.0713 (8)
H14A	0.6883	0.9558	0.1678	0.086*
H14B	0.8311	0.9626	0.2278	0.086*
C15	0.6743 (3)	0.9766 (2)	0.29339 (17)	0.0745 (9)
H15A	0.6709	1.0402	0.2882	0.089*
H15B	0.5818	0.9552	0.2867	0.089*
C16	0.7577 (4)	0.85698 (18)	0.38358 (18)	0.0739 (9)
H16A	0.6674	0.8320	0.3782	0.089*
H16B	0.8091	0.8403	0.4391	0.089*
C17	0.8258 (3)	0.82076 (18)	0.31398 (16)	0.0643 (8)
H17A	0.9163	0.8454	0.3195	0.077*
H17B	0.8342	0.7574	0.3199	0.077*
C18	0.6835 (4)	0.9899 (2)	0.44565 (19)	0.0815 (9)
H18A	0.6856	0.9462	0.4904	0.098*
H18B	0.5891	1.0019	0.4219	0.098*
C19	0.7477 (4)	1.07238 (19)	0.48507 (19)	0.0823 (10)
H19A	0.7063	1.0889	0.5335	0.099*
H19B	0.8436	1.0624	0.5059	0.099*
C20	0.7721 (3)	1.2243 (2)	0.4525 (2)	0.0683 (8)
C21	0.7494 (3)	1.2900 (2)	0.3902 (2)	0.0737 (9)
C22	0.7859 (4)	1.3752 (2)	0.4162 (3)	0.0940 (11)
H22A	0.7715	1.4205	0.3762	0.113*
C23	0.8430 (4)	1.3944 (2)	0.5001 (3)	0.0995 (12)
H23A	0.8660	1.4521	0.5160	0.119*
C24	0.8657 (3)	1.3293 (2)	0.5596 (2)	0.0859 (10)
H24A	0.9042	1.3423	0.6161	0.103*
C25	0.8314 (3)	1.2432 (2)	0.5358 (2)	0.0778 (9)
H25A	0.8484	1.1982	0.5761	0.093*
C26	0.6884 (4)	1.2689 (3)	0.2986 (2)	0.1020 (12)
H26A	0.6800	1.3219	0.2651	0.153*
H26B	0.6003	1.2432	0.2962	0.153*
H26C	0.7459	1.2281	0.2759	0.153*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	<i>U</i> ²³
0	0.1193 (18)	0.0623 (13)	0.0637 (13)	0.0113 (12)	0.0232 (12)	0.0065 (10)

N1	0.0634 (14)	0.0592 (15)	0.0511 (13)	0.0048 (11)	0.0091 (11)	0.0049 (10)
F1	0.1421 (18)	0.0689 (13)	0.0948 (14)	0.0127 (11)	0.0372 (13)	0.0029 (10)
C1	0.0565 (17)	0.066 (2)	0.0750 (19)	-0.0016 (15)	0.0229 (15)	-0.0084 (15)
N2	0.0968 (18)	0.0572 (15)	0.0523 (13)	0.0053 (13)	0.0147 (13)	0.0038 (11)
F2	0.1128 (16)	0.1552 (19)	0.0604 (11)	0.0259 (14)	0.0010 (11)	0.0235 (12)
C2	0.083 (2)	0.068 (2)	0.070(2)	-0.0132 (17)	0.0276 (17)	-0.0105 (15)
C3	0.100 (2)	0.0559 (19)	0.0590 (18)	0.0070 (18)	0.0206 (17)	0.0017 (14)
C4	0.076 (2)	0.075 (2)	0.079 (2)	0.0236 (17)	0.0225 (17)	0.0128 (17)
C5	0.0527 (17)	0.077 (2)	0.077 (2)	0.0093 (15)	0.0180 (15)	0.0144 (16)
C6	0.0532 (16)	0.0625 (18)	0.0507 (15)	0.0007 (14)	0.0118 (13)	-0.0001 (13)
C7	0.0465 (15)	0.0654 (18)	0.0574 (16)	-0.0024 (13)	0.0121 (13)	0.0024 (13)
C8	0.0532 (16)	0.0569 (17)	0.0560 (16)	0.0008 (13)	0.0158 (13)	0.0014 (13)
C9	0.0542 (19)	0.158 (3)	0.0602 (19)	-0.005 (2)	0.0144 (15)	0.022 (2)
C10	0.0563 (19)	0.179 (4)	0.067 (2)	0.005 (2)	0.0075 (17)	0.024 (2)
C11	0.081 (2)	0.085 (2)	0.0493 (17)	0.0114 (18)	0.0069 (16)	0.0079 (15)
C12	0.085 (2)	0.069 (2)	0.0567 (18)	-0.0005 (16)	0.0274 (16)	0.0079 (14)
C13	0.0613 (17)	0.0570 (17)	0.0652 (18)	-0.0030 (13)	0.0235 (15)	0.0035 (14)
C14	0.091 (2)	0.063 (2)	0.0593 (17)	0.0127 (16)	0.0123 (16)	0.0119 (14)
C15	0.099 (2)	0.0620 (18)	0.0628 (19)	0.0173 (17)	0.0166 (17)	0.0043 (15)
C16	0.107 (3)	0.0568 (18)	0.0571 (17)	0.0023 (16)	0.0118 (17)	0.0059 (14)
C17	0.082 (2)	0.0520 (16)	0.0561 (17)	0.0041 (14)	0.0047 (15)	0.0035 (13)
C18	0.119 (3)	0.069 (2)	0.0622 (18)	0.0002 (19)	0.0302 (18)	0.0009 (15)
C19	0.128 (3)	0.062 (2)	0.0609 (18)	0.0072 (18)	0.0258 (19)	0.0022 (15)
C20	0.071 (2)	0.0590 (19)	0.081 (2)	0.0123 (15)	0.0305 (17)	0.0012 (17)
C21	0.0648 (19)	0.073 (2)	0.089 (2)	0.0119 (16)	0.0293 (17)	0.0168 (18)
C22	0.083 (2)	0.072 (3)	0.134 (3)	0.0067 (19)	0.038 (2)	0.030 (2)
C23	0.078 (2)	0.066 (2)	0.157 (4)	0.0027 (19)	0.030 (3)	-0.001 (3)
C24	0.067 (2)	0.077 (3)	0.114 (3)	0.0067 (17)	0.0155 (19)	-0.011 (2)
C25	0.082 (2)	0.061 (2)	0.092 (2)	0.0117 (16)	0.0218 (19)	0.0016 (17)
C26	0.107 (3)	0.109 (3)	0.096 (3)	0.018 (2)	0.034 (2)	0.037 (2)

Geometric parameters (Å, °)

O-C20	1.375 (3)	C12—H12A	0.9300
O—C19	1.426 (3)	C13—H13A	0.9300
N1-C17	1.466 (3)	C14—C15	1.508 (4)
N1-C14	1.471 (3)	C14—H14A	0.9700
N1—C7	1.472 (3)	C14—H14B	0.9700
F1—C3	1.367 (3)	C15—H15A	0.9700
C1—C2	1.375 (4)	C15—H15B	0.9700
C1—C6	1.385 (4)	C16—C17	1.505 (4)
C1—H1A	0.9300	C16—H16A	0.9700
N2	1.456 (3)	C16—H16B	0.9700
N2	1.462 (4)	C17—H17A	0.9700
N2C16	1.461 (3)	C17—H17B	0.9700
F2—C11	1.355 (3)	C18—C19	1.493 (4)
C2—C3	1.362 (4)	C18—H18A	0.9700
C2—H2A	0.9300	C18—H18B	0.9700
C3—C4	1.360 (4)	C19—H19A	0.9700
C4—C5	1.373 (4)	C19—H19B	0.9700

C4—H4A	0.9300	C20—C25	1.376 (4)
C5—C6	1.385 (4)	C20—C21	1.394 (4)
C5—H5A	0.9300	C21—C22	1.389 (5)
С6—С7	1.513 (4)	C21—C26	1.505 (5)
С7—С8	1.503 (3)	C22—C23	1.380 (5)
C7—H7A	0.9800	C22—H22A	0.9300
C8—C9	1.374 (4)	C23—C24	1.357 (5)
C8—C13	1.383 (3)	С23—Н23А	0.9300
C9—C10	1.368 (4)	C24—C25	1.388 (4)
С9—Н9А	0.9300	C24—H24A	0.9300
C10—C11	1.356 (4)	С25—Н25А	0.9300
C10—H10A	0.9300	C26—H26A	0.9600
C11—C12	1.352 (4)	C26—H26B	0.9600
C12—C13	1.371 (4)	С26—Н26С	0.9600
C20—O—C19	117.0 (2)	N2-C15-C14	111.8 (2)
C17—N1—C14	107.2 (2)	N2—C15—H15A	109.3
C17—N1—C7	111.4 (2)	C14—C15—H15A	109.3
C14—N1—C7	111.2 (2)	N2—C15—H15B	109.3
C2—C1—C6	122.0 (3)	C14—C15—H15B	109.3
C2—C1—H1A	119.0	H15A—C15—H15B	107.9
C6—C1—H1A	119.0	N2—C16—C17	110.8 (2)
C15—N2—C18	111.3 (2)	N2—C16—H16A	109.5
C15—N2—C16	108.7 (2)	C17—C16—H16A	109.5
C18—N2—C16	112.0 (2)	N2—C16—H16B	109.5
C3—C2—C1	118.4 (3)	C17—C16—H16B	109.5
C3—C2—H2A	120.8	H16A—C16—H16B	108.1
C1—C2—H2A	120.8	N1—C17—C16	110.4 (2)
C4—C3—C2	122.4 (3)	N1—C17—H17A	109.6
C4—C3—F1	119.2 (3)	C16—C17—H17A	109.6
C2—C3—F1	118.4 (3)	N1—C17—H17B	109.6
C3—C4—C5	118.2 (3)	C16—C17—H17B	109.6
C3—C4—H4A	120.9	H17A—C17—H17B	108.1
C5—C4—H4A	120.9	N2-C18-C19	114.7 (3)
C4—C5—C6	122.3 (3)	N2—C18—H18A	108.6
С4—С5—Н5А	118.8	C19—C18—H18A	108.6
С6—С5—Н5А	118.8	N2—C18—H18B	108.6
C5—C6—C1	116.7 (3)	C19—C18—H18B	108.6
C5—C6—C7	120.8 (2)	H18A—C18—H18B	107.6
C1—C6—C7	122.5 (2)	O-C19-C18	110.2 (3)
N1—C7—C8	111.3 (2)	OC19H19A	109.6
N1—C7—C6	111.1 (2)	C18—C19—H19A	109.6
C8—C7—C6	110.3 (2)	OC19H19B	109.6
N1—C7—H7A	108.0	C18—C19—H19B	109.6
С8—С7—Н7А	108.0	H19A—C19—H19B	108.1
С6—С7—Н7А	108.0	O—C20—C25	124.2 (3)
C9—C8—C13	116.6 (3)	O—C20—C21	114.6 (3)
C9—C8—C7	122.6 (2)	C25—C20—C21	121.2 (3)
C13—C8—C7	120.8 (2)	C22—C21—C20	117.2 (3)

C10—C9—C8	122.2 (3)	C22—C21—C26	121.7 (3)
С10—С9—Н9А	118.9	C20—C21—C26	121.1 (3)
С8—С9—Н9А	118.9	C23—C22—C21	121.6 (3)
C11—C10—C9	118.9 (3)	C23—C22—H22A	119.2
C11—C10—H10A	120.5	C21—C22—H22A	119.2
С9—С10—Н10А	120.5	C24—C23—C22	120.3 (4)
C12—C11—F2	119.3 (3)	C24—C23—H23A	119.9
C12—C11—C10	121.4 (3)	С22—С23—Н23А	119.9
F2—C11—C10	119.3 (3)	C23—C24—C25	119.8 (4)
C11—C12—C13	119.0 (3)	C23—C24—H24A	120.1
C11—C12—H12A	120.5	C25—C24—H24A	120.1
C13—C12—H12A	120.5	C20—C25—C24	120.0 (3)
C12—C13—C8	121.9 (3)	C20—C25—H25A	120.0
C12—C13—H13A	119.1	C24—C25—H25A	120.0
С8—С13—Н13А	119.1	C21—C26—H26A	109.5
N1—C14—C15	110.5 (2)	C21—C26—H26B	109.5
N1—C14—H14A	109.5	H26A—C26—H26B	109.5
C15—C14—H14A	109.5	C21—C26—H26C	109.5
N1—C14—H14B	109.5	H26A—C26—H26C	109.5
C15—C14—H14B	109.5	H26B—C26—H26C	109.5
H14A—C14—H14B	108.1		
C6—C1—C2—C3	-0.8 (4)	C9—C8—C13—C12	1.3 (4)
C1—C2—C3—C4	-1.5 (5)	C7—C8—C13—C12	179.9 (2)
C1—C2—C3—F1	178.9 (2)	C17—N1—C14—C15	-59.2 (3)
C2—C3—C4—C5	2.2 (5)	C7—N1—C14—C15	178.8 (2)
F1—C3—C4—C5	-178.2 (3)	C18—N2—C15—C14	179.8 (3)
C3—C4—C5—C6	-0.5 (5)	C16—N2—C15—C14	-56.4 (3)
C4—C5—C6—C1	-1.6 (4)	N1-C14-C15-N2	58.9 (3)
C4—C5—C6—C7	-179.6 (3)	C15—N2—C16—C17	57.3 (3)
C2-C1-C6-C5	2.3 (4)	C18—N2—C16—C17	-179.3 (3)
C2-C1-C6-C7	-179.8 (2)	C14—N1—C17—C16	60.6 (3)
C17—N1—C7—C8	-178.1 (2)	C7—N1—C17—C16	-177.5 (2)
C14—N1—C7—C8	-58.6 (3)	N2-C16-C17-N1	-61.3 (3)
C17—N1—C7—C6	58.5 (3)	C15—N2—C18—C19	-99.0 (3)
C14—N1—C7—C6	178.0 (2)	C16—N2—C18—C19	139.1 (3)
C5—C6—C7—N1	-139.5 (2)	C20—O—C19—C18	173.6 (3)
C1—C6—C7—N1	42.6 (3)	N2-C18-C19-O	66.0 (4)
C5—C6—C7—C8	96.5 (3)	C19—O—C20—C25	1.7 (4)
C1—C6—C7—C8	-81.3 (3)	C19—O—C20—C21	-178.2 (3)
N1—C7—C8—C9	-45.1 (4)	O-C20-C21-C22	178.3 (3)
C6—C7—C8—C9	78.7 (3)	C25—C20—C21—C22	-1.6 (4)
N1—C7—C8—C13	136.4 (2)	O-C20-C21-C26	-1.9 (4)
C6—C7—C8—C13	-99.7 (3)	C25—C20—C21—C26	178.2 (3)
C13—C8—C9—C10	-1.5 (5)	C20—C21—C22—C23	0.4 (5)
C7—C8—C9—C10	179.9 (3)	C26—C21—C22—C23	-179.4 (3)
C8—C9—C10—C11	0.9 (6)	C21—C22—C23—C24	0.4 (5)
C9—C10—C11—C12	0.1 (6)	C22—C23—C24—C25	0.0 (5)
C9—C10—C11—F2	-179.5 (3)	O—C20—C25—C24	-177.8 (3)

F2-C11-C12-C13	179.3 (3)	C21—C20—C25—C24	2.1 (5)
C10-C11-C12-C13	-0.3 (5)	C23—C24—C25—C20	-1.2 (5)
C11—C12—C13—C8	-0.4 (4)		